Apport de la microscopie à effet tunnel pour l'ingénierie de défauts dans les matériaux bidimensionnels

> M. Bouatou, U. Chazarin, D. Demba, C. Chacon, Y. Girard, V. Repain, A. Bellec, S. Rousset, and <u>J. Lagoute</u>

Matériaux et phénomènes quantiques CNRS, Université Paris Cité, France

Outline

- Introduction
- Nitrogen doping of graphene
- Charge density waves in Transition Metal Dichalcogenides

2D materials familly

P. Ajayan, P. Kim, and K. Banerjee, Phys. Today <u>69</u>, 38, (2016)

Defects in 2D materials

- Native defects are unavoidable
- Defects can alter the performances of materials
- Defect engineering: an approach to modulate the properties on demand and achieve dedicated functionalities

Nat. Materials 18, 541 (2019)

Defect engineering in 2D materials

Vacancies in MoS₂: Hopping transport

Nitrogen doped graphene: Transistors: high ratio I_{ON}/I_{OFF}

D. Wei et al., Nano Lett., <u>9</u>, 1752 (2009)

Enhanced Photoluminescence in MoS₂ due to O₂ bonding on vacancies

Supercapacitor

H. M. Jeong et al., Nano Lett <u>11</u>, 2472 (2011)

Intercalation induced CDW transition in TMDs

Nat. Nanotechnol. 10, 270 (2015)

Nitrogen doped graphene: enhanced oxygen reduction

Nat Commun 14, 4430 (2023)

Scanning tunneling microscopy

ε tip x Tersoff and Hamann approximation:

$$I_t \propto \int_{E_r}^{E_F + eV} \rho_t(E - eV) \rho_s(E, \overrightarrow{r_0}) dE$$

assuming a metallic tip with ρ_t =cte

$$I_t \propto \rho_t \int_{E_F}^{E_F + eV} \rho_s(E, \overrightarrow{r_0}) dE$$

$$\frac{dI}{dV} \propto \rho_t \rho_s(eV, \overrightarrow{r_0})$$

dI/dV(V) is proportional to the local density of states (LDOS) of the sample at the energy eV

Outline

- Introduction
- Nitrogen doping of graphene
- Charge density waves in Transition Metal Dichalcogenides

Electronic properties of graphene

Real space: crystal structure

Bloch functions on the two sublattices

$$\Phi_{A}(\vec{r}) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e^{i\vec{k}.\vec{R}_{A,i}} \Phi(\vec{r} - \vec{R}_{A,i})$$
$$\Phi_{B}(\vec{r}) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e^{i\vec{k}.\vec{R}_{B,i}} \Phi(\vec{r} - \vec{R}_{B,i})$$

$$H = \begin{pmatrix} E_0 & \gamma_0 f(\vec{k}) \\ \gamma_0 f^*(\vec{k}) & E_0 \end{pmatrix}$$

$$f(\vec{k}) = e^{ik_y a/\sqrt{3}} + 2e^{-ik_y a/2\sqrt{3}}\cos(k_x a/2)$$

Electronic properties of graphene

$$E = E_0 \pm \gamma_0 \left| f\left(\vec{k} \right) \right|$$

$$f(\vec{k}) = e^{ik_y a/\sqrt{3}} + 2e^{-ik_y a/2\sqrt{3}}\cos(k_x a/2)$$

Electronic bandstructure

Electronic properties near the Dirac point

Bandstructure around K point

Linear dispersion

$$\mathbf{E} = \pm \hbar k v$$

v : Fermi velocity k measured from the K point

Linear density of states

$$\frac{dN}{dE} = \frac{dN}{dk}\frac{dk}{dE} = \frac{k}{2\pi}\frac{1}{\hbar\nu} = \frac{|E|}{2\pi(\hbar\nu)^2}$$

$$N(E) = \frac{2|E|}{\pi(\hbar\nu)^2}$$

Scanning tunneling spectroscopy on graphene on SiC(000 $\overline{1}$)

Inelastic process in STM measurement on graphene

LDOS
$$(z, k_{\parallel}) \propto e^{-z/\lambda}$$
 $\lambda^{-1} = 2\sqrt{2m\phi/\hbar^2 + k_{\parallel}^2}$

STM current dominated by states around Γ point No state at Γ point in graphene => need phonon excitation at K point to tunnel through the K point of graphene

Y. Zhang et al., Nature Physics, <u>4</u>, 627 (2008)

Scanning tunneling spectroscopy on graphene on SiC(000 $\overline{1}$)

Multilayer graphene on SiC(000-1)

Phonon inelastic excitation at ±60 mV

 $V_{\rm D} = 140 \text{ mV} => E_{\rm D} = 80 \text{ mV}$

Slight natural p-doping in pristine graphene on SiC carbon side

Nitrogen doped graphene

Joucken, L. Henrard and J. Lagoute, Phys. Rev. Materials 3, 110301 (2019)

Nitrogen doped graphene

Charge given by each nitrogen atom:

$$\frac{n}{n_N} = 0.36$$
 electron per nitrogen Less than 1

Localized resonant state

Graphene with a point defect

Density of state D(E)

Green function G(E)

$$D(E) = -\frac{1}{\pi} Tr \big[Im \big(G(E) \big) \big]$$

$$G(E) = \frac{1}{\mathcal{E} - H}$$

Where
$$\mathcal{E} = \lim_{\eta \to 0^+} (E + i\eta) I$$

 $H = H^0 + U$

- *H* Total Hamiltonian
- H^0 Hamiltonian Wwthout defect
- *U* Defect potential

Graphene with a point defect

Density of state projected on the defect site

$$n_{00}(E) = -\frac{1}{\pi} Im(G_{00})$$

Green's function without defect $G_{00}^0 = F^0 + in^0$

$$n_{00}(E) = -\frac{1}{\pi} \frac{n^0}{(1 - UF^0)^2 + U^2 n^{0^2}}$$

For small
$$n^0$$
 peak for $F^0 = \frac{1}{U}$

Ph. Lambin et al. Phys. Rev. B 86, 045448 (2012)

Nitrogen in graphene

0.6 0.5 $n^{0}(E)^{*}|\gamma_{0}|$ STS on nitrogen in graphite STM on nitrogen in graphite 0.4 0.3 0.2 0.1 dl/dV (a.u.) 0.0 0.8 0.4 $F^0(E)^*|\gamma_0|$ 0.5 1.0 -1.0 -0.5 0.0 nm Bias (V) 0.0 -0.4-1/|U|-0.8 $^{-5}$ -3З 5 -11 $E/|\gamma_0|$

Ph. Lambin et al. Phys. Rev. B 86, 045448 (2012)

Vacancy in graphene

Ph. Lambin et al. Phys. Rev. B 86, 045448 (2012)

Band engineering: realization of in-plane junction

Nitrogen

Nitrogen doping of graphene reduced C_{60} /graphene after nitrogen plasma below the C_{60} island

2V, 50 pA 2V, 10 pA 65% of incoming nitrogen species are stopped by the C₆₀ monolayer

Sharp junctions (width<Fermi wavelength)

M. Bouatou et al., Adv. Funct. Mater., 32, 2208048 (2022)

Localized state for chemical activity

Occupied state on pyridine

- Lewis base \Rightarrow
- active site for \Rightarrow

oxygen reduction reaction

D. Guo et al., Science 351, 361 (2016)

Sample bias (mV)

T. Kondo et al., PRB **86**, 035436 (2012)

Theory

-600

-300

0

Defect engineering: combining vacancies and nitrogen

Vacancies + N in HOPG

Vacancies in HOPG

D. Demba et al., (2024) submitted

Outline

- Introduction
- Nitrogen doping of graphene
- Charge density waves in Transition Metal Dichalcogenides

Transition Metal Dichalcogenides (TMD)

1																18	
1 H							X: chaicogen										
hydrogen	2					Τ.						13	14	15	16	17	helium
3 Li lithium	⁴ Be beryllium						5 B boron	6 C carbon	7 N nitrogen	8 O oxygen	9 F fluorine	10 Ne neon					
11 Na	12 Ma		M: transition metal											15 P	¹⁶ S	¹⁷ CI	18 Ar
sodium	magnesium	3	4	5	6	7	8	9	10	11	12	aluminium	silicon	hosphorou	sulphur	chlorine	argon
¹⁹ K potassium	20 Ca calcium	SC scandium	22 Ti titanium	V V vanadium	24 Cr chromium	25 Mn manganese	Fe iron	27 Co cobalt	28 Ni nickel	Cu copper	30 Zn zinc	31 Ga galium g	32 Ge geramaniun	AS As arsenic	34 Se selenium	³⁵ Br bromine	³⁶ Kr krypton
37 Rb rubidium	38 Sr strontium	39 Y yttrium	⁴⁰ Zr zirconium	41 Nb niobium	42 Mo nolybdenur	43 Tc technetium	44 Ru ruthenium	45 Rh rhodium	⁴⁶ Pd palladium	47 Ag silver	⁴⁸ Cd cadminium	49 In indium	50 Sn tin	51 Sb antimoney	52 Te tellurium	53 I iodine	Xe xenon
55 Cs caesium	56 Ba barium	57-71	72 Hf hafnium	73 Ta tantalum	74 W tungsten	74 Re rhenium	76 Os osminium	77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium	⁸² Pb lead	Bi bismuth	Po polonium	At astatine	86 Rn radon
⁸⁷ Fr	⁸⁸ Ra	89-103											-				

francium

radium

Formal charge: M⁴⁺, X²⁻

Electronic configuration:

Chalcogen: ns^2 , np^6 (n=3,4,5 for X=S, Se, Te) Transition metal: d^n , with n=0, 1, 2, 3 for group 4, 5, 6 7

T and H polymorphs of TMDs

Octahedral

С

 d_{xz} d_{yz} Energy d_{xy} d_{z^2} $d_{x^2-y^2}$

Trigonal prismatic

 d_{xz} d_{yz} $d_{x^2-y^2}$ d_{xy} d_{z^2}

Charge density waves in metallic TMDs

M. M. Ugeda et al., Nat. Phys. **12**, 92 (2016)

Charge density waves, Peierls transition

Gain in electronic energy from the lowering of occupied electronic states

But elastic energy cost

Bulk vs monolayer CDW in VSe₂

Bulk VSe₂ 4x4 CDW

Monolayer VSe₂ $\sqrt{3} \times \sqrt{7}$ CDW

W. Jolie *et al.*, PRB **99**, 115417 (2019)

P. Chen et al., PRL 121, 196402 (2018)

Alkali intercalation: Na intercalated bulk VSe₂

 $\sqrt{3} \times \sqrt{7}$ CDW

VSe₂

1 V, 20 pA

U. Chazarin et al., Adv. Mater. Interfaces 10, 2201680 (2023)

Spectroscopy of 1T-VSe₂

Calculated DOS

Alkali intercalation: Na intercalated bulk VSe₂

STS on VSe₂ monolayer

Coexisting multiple CDW in VTe2 monolayer

VTe₂ monolayer on graphene bilayer

dI/dV spectroscopy

0.5 V, 100 pA

0.15 V, 20 pA

CDW phase switching induced by STM tip

Visualisation of Elementary excitations: phase switch, rotation, sliding

Sliding

U. Chazarin et al., Nano Lett. 24, 3470 (2024)

Conclusions

Point defects in graphene:

Dopants for band engineering Localized states for chemical activity

Charge density waves in TMDs: Intercalants for doping, decoupling Local excitation for extended CDW phase switching

Mastering defects opens fascinating routes toward applications of 2D materials in electronics, sensors, optics, catalysis...

Acknowledgements

Mehdi Bouatou Ulysse Chazarin Demba Demba Cyril Chacon Yann Girard Vincent Repain Amandine Bellec Sylvie Rousset Jérôme Lagoute

SPECS (CEA Saclay, France)

Yannick Dappe Alexander Smogunov Cyrille Barreteau

Center for Nanostructured Graphene Technical University of Denmark

Aleksander Bach Lorentzen Mads Brandbyge

LPS (Univ Namur FUNDP)

Robert Sporken Frédéric Joucken

Fundings

GDR NANOSCIENCES EN CHAMP PROCHE SOUS ULTRA VIDE

École d'été 2024

7-11 octobre 2024 Nanosciences et Microscopies champ proche sous ultra-vide

https://www.nanosciences-spm-uhv.com

- la microscopie à effet tunnel (STM) et ses dérivées (STM-photon et STM sous champ magnétique)
- S les différentes spectroscopies STS (I(V), I(Z), imagerie dI/dV, ...) qui y sont associées
- la microscopie à force atomique en mode non contact (nc-AFM)
- S la nanosonde de Kelvin (KPFM) et les différentes spectroscopies de force (Δf(V), Δf(z), EFM,...) qui y sont associées